Topic 8 -Undefermined Coefficients

Ne now learn a method to guess a
particular solution
$$y_p$$
 to
 $a_2y'' + a_1y' + a_0y = b(x)$
where a_2, a_1, a_0 are constants.
This method is called the
method of undetermined coefficients.
It will only work for certain $b(x)$.
It will first require finding
the homogeneous solution y_h to
 $a_2y'' + a_1y' + a_0y = 0$
There will be several cases to
Lonsider.

Ex: Find the general solution to

$$y'' + 3y' + 2y = 2x^2$$

Step 1: Solve the homogeneous equation
 $y'' + 3y' + 2y = 0$
The characteristic polynomial is
 $r^2 + 3r + 2 = 0$
 $(r+2)(r+1) = 0$
 $r = -1, -2$
The general homogeneous solution is
 $y_h = c_1 e^{-x} + c_2 e^{-2x}$

Step 2: Guess what yp is.
We have
$$b(x) = 2x^2$$
.
This $b(x)$ doesn't occur
as part of Yn.
Note that $b(x)$ has derivatives
 $2x^2$, $4x$, 4

Thus we givess

$$y_p = Ax^2 + Bx + C$$
 make y_p as combor
of derivatives
of b(x) and it's derivatives are
of these forms.
Now plug this y_p into $y'' + 3y' + 2y = 2x^3$.
We have
 $y_p = Ax^2 + Bx + C$
 $y_p'' = 2A + B$
 $y_p'' = 2A + B$
So, plugging y_p into $y'' + 3y' + 2y = 2x^2$ gives
 $(2A) + 3(2Ax + B) + 2(Ax^2 + Bx + c) = 2x^2$
Rearrange
 $2A + 6Ax + 3B + 2Ax^2 + 2Bx + 2C = 2x^2$
(move like terms and set to 0 to get
(move like terms and set to 0 to get

Group like terms of

$$(2A+3B+2C)+(6A+2B)x+(2A-2)x^{2}=0$$

Thus we get

$$2A+3B+2C=0$$
 (1)
 $6A+2B = 0$ (2)
 $2A-2 = 0$ (3)

(3) gives
$$A=1$$
.
Plug $A=1$ into (2) to get $6+2B=0$.
So, $B=-3$.
Plug $A=1$, $B=-3$ into (1) to get $2-9+2C=0$
Plug $A=1$, $B=-3$ into (1) to $get 2-9+2C=0$
So, $C=7/2$.

Thus,

$$y_p = Ax^2 + Bx + C$$

$$= x^2 - 3x + \frac{3}{2}$$

solves
$$y'' + 3y' + 2y = 2x^{2}$$
.

Step 3: Thus, the general solution to

$$y'' + 3y' + 2y = 2x^2$$

is
 $y = y_h + y_p = c_1 e^x + c_2 e^{2x} + x^2 - 3x + \frac{7}{2}$

Ex: Let's find the general solution to

$$y'' - y' + y = 2\sin(3x)$$

Step 1: First we solve the homogeneous equation
 $y'' - y' + y = 0$
Which has characteristic equation
 $r^2 - r + 1 = 0$
The roots are
 $r = -\frac{(-1) \pm \sqrt{(-1)^2 - 4}}{2} = \frac{1 \pm \sqrt{-3}}{2} = \frac{1}{2} \pm \sqrt{3}\lambda$
Thus, the general homogeneous solution is
 $y_h = c_1 e^{\frac{1}{2}x} \cos(\sqrt{3}x) + c_2 e^{\frac{1}{2}x} \sin(\sqrt{3}x)$
Step 2: Now we gives a particular
solution to
 $y'' - y' + y = 2\sin(3x)$
 $b(x)$

Note that
$$b(x) = 2\sin(3x)$$

 $b'(x) = 6\cos(3x)$
 $b''(x) = -18\sin(3x)$
 \vdots
 $\cos(3x)$
 $\cos(3x)$

Thus we guess

$$y_{p} = A \sin (3x) + B \cos(3x)$$
Notice that none of the terms of y_{p}
occur in y_{h} .
Let's try plugging y_{p} into $y'' - y' + y = 2\sin(3x)$.
We get

$$y_{p} = A \sin (3x) + B \cos (3x)$$

$$y_{p}' = 3A \cos(3x) - 3B \sin(3x)$$

$$y_{p}'' = -9A \sin (3x) - 9B \cos (3x)$$
Plugging into $y'' - y' + y = 2\sin(3x)$ gives

$$(-9A \sin(3x) - 9B \cos(3x)) - (3A \cos(3x) - 3B \sin(3x))$$

$$+ (A \sin(3x) + B \cos(3x)) = 2\sin(3x)$$

This gives

$$(-3A-8B)\cos(3x) + (-8A+3B-2)\sin(3x) = 0$$

must be 0
must be 0

$$-3A - 8B = 0$$
 ()
 $-8A + 3B - 2 = 0$ (2)

$$\widehat{D} \text{ gives } A = -\frac{8}{3}B.$$

$$Plvg \text{ into } \widehat{O} + get - 8(-\frac{8}{3}B) + 3B - 2 = 0$$

$$So_{3} + \frac{3}{3}B = 2.$$

$$Thus, B = -\frac{6}{73}$$

$$So_{7} A = -\frac{8}{3}B = -\frac{8}{3}(\frac{6}{73}) = -\frac{16}{73}$$

Thus, $y_{P} = -\frac{16}{73} \sin(3x) + \frac{6}{73} \cos(3x)$ is a particular solution to $y'' - y' + y = 2 \sin(3x)$

Step 3: Thus, the general solution to

$$y'' - y' + y = 2\sin(3x)$$

is
 $y = y_n + y_p$
 $= c_1 e^{\frac{1}{2}x} \cos(\sqrt{3}x) + c_2 e^{\frac{1}{2}x} \sin(\sqrt{3}x)$
 $-\frac{16}{73}\sin(3x) + \frac{6}{73}\cos(3x)$

Here is a table to help you make your guess for y_p for $a_2y'' + a_1y' + a_0y = b(x)$

b(x)	Уp
constant	A
5x-3	Ax+B
$10 \times^2 - \times +1$	$Ax^{2}+Bx+C$
$x^3 - x + 10$	$Ax^{3}+Bx^{2}+Cx+D$
sin(6x)	$A\cos(6x) + B\sin(6x)$
Cos (6x)	Acos(6x)+Bsin(6x)
	Ae ^{3×}
$(2x+1)e^{3x}$	$(A \times + B)e^{3 \times}$
z 3× x e	$(Ax^{2}+Bx+C)e^{3x}$
$e^{3\times}sin(4\times)$	$Ae^{3\times}cos(4\times) + Be^{3\times}sin(4\times)$
$5x^2 sin(4x)$	$(Ax^{2}+Bx+c) \cos(4x)$ + $(Dx^{2}+Ex+F) \sin(4x)$
$\times e^{3\times}cos(4\times)$	$(A \times + B) e^{3 \times} cos(4 \times)$ + $(C \times + D) e^{3 \times} sin(4 \times)$

What if in

$$a_2y'' + a_1y' + a_0y = b(x)$$

you have multiple terms in $b(x)$.
That is, what if
 $b(x) = b_1(x) + b_2(x) + \dots + b_n(x)$.
Then you gress a term for
cach $b_1(x)$ and add your
gresses together.

Ex: Let's solve
$$y''-Zy'-3y = 4x-5 + 6xe^{2x}$$

Step 1:
First solve the homogeneous equation

$$y'' - 2y' - 3y = 0$$

The characteristic equation is
 $r^2 - 2r - 3 = 0$
 $(r - 3)(r+1) = 0$
Thus, the general homogeneous solution is
 $y_h = c_1 e^{3x} + c_2 e^{x}$

Step 2: Now we guess a particular
solution for

$$y'' - 2y' - 3y = (4x - 5) + 6xe^{2x}$$

degree 1 exponential
poly
guess guess
 $Ax+B$ $Cxe^{2x} + De^{2x}$

Let

$$y_{p} = A \times + B + C \times e^{2x} + De^{2x}$$

Let's plug this into the equation.
 $y_{p} = A \times + B + C \times e^{2x} + De^{2x}$
 $y_{p}' = A + Ce^{2x} + 2C \times e^{2x} + 2De^{2x}$
 $y_{p}'' = 2Ce^{2x} + 2Ce^{2x} + 4C \times e^{2x} + 4De^{2x}$
Plugging into $y'' - 2y' - 3y = 4x - 5 + 6 \times e^{2x}$ gives:
 $[(4C+4D)e^{2x} + 4C \times e^{2x}] - 2[A + (C+2D)e^{2x} + 2C \times e^{2x}]$
 y_{p}''
 $-3[A \times + B + C \times e^{2x} + De^{2x}] = 4x - 5 + 6 \times e^{2x}$
 y_{p}
Regrouping gives:
 $-3Ax + (-2A-3B) - 3C \times e^{2x} + (2C-3D)e^{2x} = 4x - 5 + 6xe^{2x}$

We get

$$-3A = 4$$

 $-2A - 3B = -5$
 $-3C = 6$
 $2C - 3D = 0$
 $A = -\frac{4}{3}$
 $B = -\frac{23}{9}$
 $C = -2$
 $D = -\frac{4}{3}$

Thus,

$$y_p = -\frac{4}{3}x - \frac{23}{9} - 2xe^{2x} - \frac{4}{3}e^{2x}$$

Step 3: The general solution to
 $y'' - 2y' - 3y = 4x - 5 + 6xe^{2x}$

زح

 $\begin{aligned} y &= y_{h} + y_{p} \\ &= c_{1} e^{x} + c_{2} e^{3x} - \frac{4}{3} x - \frac{23}{9} - 2 x e^{2x} - \frac{4}{3} e^{2x} \end{aligned}$

What can go wrong with the guessing? If yp contains terms that appear in Yh then you will have to Multiply those terms by the smallest power x" that eliminates the duplication

Let's see some examples of this

Ex: Let's solve

$$y'' - 5y' + 4y = 8e^{x}$$

Step 1: Solve the homogeneous equation
 $y'' - 5y' + 4y = 0$
which has characteristic polynomial
 $r^{2} - 5r + 4 = 0$
 $(r-1)(r-4) = 0$
Sos
 $y_{n} = c_{1}e^{x} + c_{2}e^{4x}$
Step 2: Let's guess a particular solution
for $y'' - 5y' + 4y = 8e^{x}$.
Our table says to try $y_{p} = Ae^{x}$.
Our table says to try $y_{p} = Ae^{x}$.
However plugging this in gives
 $Ae^{x} - 5Ae^{x} + 4Ae^{x} = 8e^{x}$
 $0 = 8e^{x}$
This happened because e^{x} is part of y_{h} .

What we do is we instead try

$$y_p = A \times e^{x}$$
 (multiply by x)
This isn't part of yh.
We get
 $y_p = A \times e^{x}$
 $y_p' = A e^{x} + A \times e^{x}$
 $y_p'' = A e^{x} + A e^{x} + A \times e^{x}$
Plugging this into $y'' - 5y' + 4y = 8e^{x}$ gives
 $(Ae^{x} + Ae^{x} + A \times e^{x}) - 5(Ae^{x} + A \times e^{x}) + 4A \times e^{x} = 8e^{x}$
 $Ae^{x} = 8e^{x}$
 $A = -\frac{8}{3}$
Thus, $y_p = -\frac{8}{3} \times e^{x}$.
Step 3: The general solution to $y'' - 5y' + 4y = 8e^{x}$
is $y = y_h + y_p = c_1 e^{x} + c_2 e^{4x} - \frac{8}{3} \times e^{x}$

Ex: Let's solve

$$y''-Zy'+y=e^{x}$$

Step 1: Solving $y''-Zy'+y=0$ we have
the characteristic polynomial
 $r^{2}-2r+l=0$
 $(r-1)(r-1)=0$
So,
 $y_{h}=c_{1}e^{x}+c_{2}xe^{x}$
Step 2: Now to guess y_{p} at first
We think $y_{p}=Ae^{x}$ but e^{x} is part
of y_{h} . Then we try $y_{p}=Axe^{x}$ but
that's also part of y_{h} . Thus,
We have: $y_{p}=Ax^{2}e^{x}$.
We have: $y_{p}=Ax^{2}e^{x}$
We have: $y_{p}=Axe^{x}+2Axe^{x}+2Axe^{x}+Axe^{x}$

×

Plugging this into y"-zy'+y=e we get $(2Ae^{+}+2Axe^{+}+2Axe^{+}+Ax^{2}e^{+})-2(2Axe^{+}+Ax^{2}e^{+})$ $+(A \times e^{\times}) = e^{\times}$ Simplifying gives: $2 \text{Ae}^{\times} = e^{\times}$ Thus, $A = \frac{1}{2}$. So, yp= zxex. Step 3: The general solution to $y' - 2y' + y = e^{x}$ is $y = y_h + y_p = c_1 e^x + c_2 x e^x + \frac{1}{2} x^2 e^x$